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A method for the solution of Fredholm integral equations of the second kind with 
sigularities both in the kernel and in the solution is developed, based on the approximation 
of the solution by B-splines. The main problem of this method, the distribution of knots, is 
extensively investigated. The Faddeev equations describing the physical problem of pion 
deuteron elastic scattering are solved as an application of this method. ‘es 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

The numerical treatment of the integral equations for three-body scattering, the 
Faddeev [l] or AGS equations [2]-Fredholm integral equations of the second 
kind-is a complicated affair due to the singularities both in the kernel and in the 
solution. 

Different methods have been developed in the past to solve these equations of 
which the contour rotation method [3-51 and the Pad&approximant approach 
[6] are the most widely used today. The contour rotation method consists of 
solving the integral equation along the line obtained by rotation of the positive real 
axis into the complex plane. It requires the analytical continuation of the kernel for 
complex values of its arguments. The solution for real arguments is obtained from 
the solution for complex arguments in a second step involving an integration. For 
higher energies the maximum angle of rotation becomes smaller and hence the 
integration contour comes closer to the real axis where the singularities in the 
kernel occur. This necessitates the use of more integration points [7]. The 
analytical continuation of the kernel is not required if the integral equation is 
solved along the real axis as is done in the Pad&approximant approach. Successive 
iterations of the integral equation are required to determine the coefficients in this 
rational approximation of the solution. The calculation of these iterations is time 
consuming due to the singular integrands involved. 

A conceptually much simpler method to solve the integral equations of three- 
body scattering along the real axis is the spline method we describe here. The 
usefulness of this method for the solution of singular integral equations was studied 
by Atkinson [S] for the case of weakly singular kernels, but only for solutions 
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belonging to the space C4[a, b]. Later on, Schneider [9] and Graham [lo] 
investigated the convergence of this method for the case where the solution has 
isolated singular points as well. The latter two authors make the remark that non- 
uniform meshes have better convergence properties than equidistant distributions. 
Eyre et al. [ll, 121 applied the spline method to the AGS equations, first 
employing equidistant knot-distributions only, but later on also using non-uniform 
meshes. Below we describe the spline method in more detail, but here we want to 
point out one additional advantage of this approach over the contour rotation 
method and the Pad&approximant method. Product integration makes use of the 
expansion of the solution in terms of suitably chosen basis functions. Then the 
original integral equation is turned into a set of linear equations for the expansion 
coefficients. (Using splines as a basis, singularities of the solutions of the type xb can 
be accurately approximated.) Once these coefficients are known, an approximation 
of the solution exists for any positive real value of its argument. The extra inter- 
polation procedure to obtain an approximation of the solution for arbitrary 
positive real arguments, as is needed in the contour rotation method as well as in 
the PadC approach, is in the spline method not required. This is of importance in 
the calculation of breakup amplitudes in the three-body scheme [ 131. 

In the spline method the singularities of the kernel can be treated in a 
straightforward way using subtraction. The singularity in the solution, however, 
requires special attention. This is due to the fact that the basic ingredient of the 
spline method consists of the approximation of the solution by a set of basis func- 
tions. Obviously the accuracy of such a method for solving integral equations is 
closely connected to the extent to which the solution can be approximated by these 
basis functions at all. Therefore the approximation problem should be looked at 
first, particularly since the solution of the three-body scattering equations has a 
square root behaviour at a certain point [14, 151. For that reason the elementary 
problem of the approximation of a square root function by a finite set of basis 
functions will be discussed in detail. 

Then as a test of the method an integral equation is constructed which has a 
singularity structure which is the same as that of the three-body scattering equa- 
tions in all relevant aspects. However, in this example an analytical solution is 
known and therefore not only the convergence, but also the accuracy, of the 
numerical solution can be tested. Using the outcome of this example as a guideline, 
we applied the method to the three-body approach to piondeuteron scattering and 
results for the piondeuteron scattering amplitude will be shown. 

The organisation of this paper is as follows. In Section 2 the spline method to 
solve integral equations is explained in detail. In Section 3 the elementary problem 
of how to approximate a square root function in an optimal way is investigated. 
Section 4 is devoted to the solution by the spline method of the aforementioned 
specially constructed example. The questions of knot distribution and convergence 
are addressed. The solution by the spline method of the three-body integral equa- 
tions describing the physical problem of pion-deuteron elastic scattering is discussed 
in Section 5. 
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2. THE SOLUTION OF FREDHOLM INTEGRAL EQUATIONS BY MEANSOF SPLINES 

The spline method for solving integral equations consists of the following. 
Consider the integral equation 

fb) = g(x) + j” m, Y)f(Y) 4 (2.1) 
a 

with f~ C[a, b]. Choose a finite dimensional subspace S” c C[a, 61 and choose a 
set { Bi(x j) of basisfunctions for S”. Approximate the unknown function f by an 
element of S”. The problem of solving the integral equation is then reduced to the 
determination of the expansion coefficients cj in such a way that the residual 
function r(x): 

r(x) = c cj 
1 [ 

B;(x) - J-” zqx, )I) B,(y) dy -g(x) (2.2) ‘I I 

is minimal in some sense. When it is required that r vanishes in certain points xi, 

r( Xj) = 0, (2.3) 

this method is called collocation. The points xi are called collocation points. The 
coefficients ci can be found by solving the corresponding set of linear equations: 

c Mji cj = gj 

with 

Mji = Ei(Xj) -J” K(Xj, y) B;(y) dy, 
cl 

(2Sa) 

g, = .!a,). (2Sb) 

The procedure described above is valid for any finite dimensional subspace S”. 
Knowledge of the singularity structure of the solution can serve as a guiding 
principle for the choice of a suitable subspace; when it is known, e.g., that the 
solution has a discontinuous derivative at some point it is advantageous to use an 
S” whose elements also have a discontinuous derivative at that point. 

A suitable subspace that is capable to exhibit this feature is the subspace spanned 
by cubic E-splines. A cubic B-spline (“hill” or “hump” function) is a positive 
definite function defined by a set of points called knots; between neighbouring 
knots it is a cubic polynomial and at the knots these polynomials are glued together 
smoothly. To define n cubic E-splines, n + 4 knots are needed; these knots are 
allowed to coincide. The B-splines lose some smoothness at a point where knots 
coalesce (a multiple knot). They can be evaluated in a numerically stable manner 
using the method of Cox [16, 171 and de Boor [18]. 

To be specific, consider n knots ti, 

a=t,<t,< ... <t,=b, & (2.6) 
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together with the extended knots t-,<t-,<t,,<a and b<tt,,,<t,+z<tt,,j. 
These knots determine n + 2 B-splines Bi, i = 0, . . . . n + 1, where Bi is non-zero only 
in the interval [tip2, ti+2] and is a cubic polynomial in each subinterval 
Cfi+,3 t ,+j+,1,~’ -2, ...? + 1. If only simple knots are used, i.e., tic ti+ r, then the 
Bi have continuous second derivatives over the whole interval [a, 61; if a triple 
knot is used (t,=t,+,=t,+, for some j) the B, (i = j - 2, . . . . j+ 4) are continuous 
at that knot, but do not have continuous derivatives there. In this way a finite 
dimensional subspace S” of C[a, 61 can be constructed whose elements have a 
discontinuous derivative at the triple knots. The above results can be easily 
generalised for higher order B-splines. 

A topic that has to be discussed when collocation is used to solve integral equa- 
tions together with B-splines as a basis, is that of the distribution of the knots over 
the interval [a, 61. Is there an optimal distribution of knots such that for a fixed 
number of basis functions the difference between the numerical and the exact 
solution measured in some norm is minimal? To answer this question the factors 
that determine this difference should be known. These factors have been 
investigated in a mathematically thorough study of collocation as a means of 
solving integral equations by Philips [ 191. The main and intuitively obvious factor 
is the extent to which the solution can be approximated by elements of S” at all. 
This implies the somewhat simpler problem: is there an optimal distribution of 
knots such that for a fixed number of basisfunctions the difference between 
approximated and exact function measured insome norm is minimal? Note that the 
solution of the integral equations for three-body scattering is a smooth function 
apart from the square root singularity. Splines are well suited to approximate 
smooth functions; therefore the main errors in the approximation of the solution by 
splines are expected to occur in the region of non-smooth behaviour, i.e., in the 
neighbourhood of the square root singularity. Furthermore, for the description of 
elastic scattering the solution is required at a point very near the square root 
singularity. The basic problem of how to distribute knots to approximate the 
square root function in the neighbourhood of its singular point in an optimal way 
should hence be examined first. 

3. THE APPROXIMATION OF xa BY MEANS OF SPLINES 

Rice [20] presents rigorous results on the distribution of knots to approximate 
functions of the form xn on the interval [0, l] in an optimal way. Consider a 
function f(x) defined on [0, l] with L, norm: 

(3.la) 

(3.lb) 
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The function f is to be approximated by spline functions Sk,(x) defined by the set 
7c of n knots {ti> with ti<ti+,. Sk,(x) is a polynomial of degree k - 1 or less in 
[ti, ti+ ,I. The distance in the p norm off from the set S”, of all functions S:(X) is 
defined as 

(3.2) 

Let f(x) = x’, c( > 0 and consider the following partition 7cq of [0, 11: 

t,= i-1 y J ( > n-l ’ 
j = 1, . ..) n. (3.3 1 

Extend this partition such that each knot is a (k - 1 )-tuple knot. Then, according 
to Rice [20], 

with 

dist,(P, StJ = O(nmr), (3.4) 

@? q < W r= 
k q > k/cc. 

(3.5) 

In particular, the smallest optimal knot distribution exponent to approximate the 
square root function (IX= 1) with cubic splines (k = 4) is q = 8. These results hold 
for a large number n of basis functions. More generally, when the distance is 
measured in the p norm, 

with 

dist,(x’, S”,,) = O(n-‘), (3.6) 

(1 +aP)q q<(l +kpMl +crp) r= 
k q3(1 +kp)/(l +NP). 

(3.7) 

In practice it is important to know for what value of n the above results hold. 
Therefore we performed calculations to approximate x1’* by means of cubic splines 
using the following knot distribution: 

j= 1, . . . . n, 

(3.8) 

Simple knots were used in the calculations, except for the endpoints. The triple 
knots were considered only in connection with the theoretical investigation of the 
rate of convergence. We used simple knots in the expectation that for them an even 
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better or at least the same accuracy and rate of convergence would be attained. 
With the aid of these knots a basis of Si,=” was constructed consisting of n + 2 
B-splines { Bi 1 i = 0, . . . . n + 1 }. To project an element f from C[O, 11 on Si,=4, n + 2 
collocation points xj are needed, which were taken as 

x0= t,, .YI = (1, + tJ2, x2 = t2, . ..) 

-x,, ~ 1 = t,, ~ 1, -y,, = ([?I ~ , + r,)P, -y, + , = t,, . 
(3.9) 

A projector P: C[O, I] + Si;” is defined by 

n+l 
Pf = c ciBi, 

i=O 

with c, determined by the solution of the system 

n+l 

(3.10) 

of linear equations: 

c Bi(xj) ci=f(xj), j=O, . . . . n+ 1. (3.11) 
i=O 

In this way we approximated x1” on [0, I] by means of splines and calculated the 
differences 

E, := -v~;:, x1’? -c c,Bi(x) 
I 

and 

E, := x1./z-~ ciBi(x)/ dx. 
I 

(3.12) 

(3.13) 

This was done employing 10 Gauss-Legendre integration points over each subinter- 
val [,vj, xi+,] (j=O, . . . . n) obtaining lO(n + 1) integration points uk to calculate E, ; 
for E, we calculated the lower bound 

max 
k E ( 1. . . . . lO(n + I ) } 

I.:.‘-&Bi(uk)l 
I 

(3.14) 

The results for E, and E,m obtained in this way are shown in Figs. 1 and 2, where 
the error is plotted as a function of the number of collocation points for different 
values of the knot distribution exponent q. The theoretical predictions about the 
rate of convergence as a function of the knot distribution exponent were indeed 
observed for n > 30, both in the L, and in the L, norm. Note that for large values 
of the number of knots n, the best approximation to x112 in her L, norm is indeed 
obtained when the knot distribution exponent is equal to 8. For smaller numbers 
of basis functions (e.g., between 15 and 30, a typical number used in the solution 
of the AGS-type [2] integral equations) the error in the L, norm was smallest for 
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8 
w 

-’ ’ 1”’ I _ 

Number of col. points 

FIG. 1. Difference in L, norm between & and the spline approximation 
number of collocation points for different values of the distribution exponent q. 

as a function of the 

a distribution exponent equal to 3 or 4; an exponent equal to 8 was actually the 
worst of all distributions we tried. This fact has been overlooked so far in the 
literature [12]. Concerning the error in the L, norm, a distribution exponent of 3 
is favourable in this range of numbers of collocation points. 

We also tried to approximate the square root function by the set spanned by 
spline functions defined by [21, 223 

Si( tj) = a,, (3.15) 

instead of by the set of functions spanned by B-splines. This basis has been used in 
the literature [21,23]. Our numerical results with this basis however showed much 
larger errors due to oscillations. 
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FIG. 2. Same as Fig. 1, but now the difference is measured in L, norm. 

b- 

0 q=n 
0 q=2 
A q=3 
+ q=4 
x q=6 
0 q=8 

Number of cd. points 

From this we conclude that in order to approximate x1” by a rather limited 
( < 30) number of splines it is advantageous to use a distribution exponent of 3 
together with 5-splines as a basis. 

4. THE ANALYTICALLY SOLVABLE EXAMPLE 

To test the accuracy and convergence of the spline method an example was 
constructed, such that the kernel and the solution have similar singularity 
structures-as far as they are important to test the spline method-as the AGS-type 
integral equations. In the latter the kernel K(x, y) is logarithmically singular for 
points (x, J) on curves F(x, y) =0 which are ellipses in the (x, ~7) plane (the 
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so-called Amado ellipses [24]) and the solution f(.u) has a square root behaviour 
at the point where dF(x, ~)/c?Y = 0. In the example 

.fb) = g(x) + j” K(% .v)f(Y) &, (4.1) a 

the following kernel, solution, and inhomogeneous term have been chosen: 

K(x, y) = C In IX’ + J’ - RZI (4.2a) 

(4.2b) 

g(x)=.m)- h, YJf(Y)4 (4.2~) 

c= [(2R)3’2 n] --‘. (4.2d) 

The full expression for the inhomogeneous term is not given here because of its 
length but it can be obtained from straightforward calculation of the integral 
involved, using standard tables [25]. The equation was solved on the interval 
[ -0.75, 2.01 with a singularity at R = 1. For a plot of the inhomogeneous term see 
Fig. 3. For different knot-distributions and for different numbers of basis functions 
the numerical solution was compared with the analytical one and their difference in 
the L, and L, norm was determined in the same way as described in the previous 
section. The knots were distributed as follows. First, knots were distributed over 
[0, l] using a distribution exponent q as 

j = 1, . ..) n; (4.3) 

X 

FIG. 3. The inhomogeneous term g(x). Note that it is a smooth function everywhere, in particular 
at x = 1 where the solution of the integral equation has a square root behaviour. 
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then these knots were mapped linearly from [0, l] to CR, 61. Again using Eq. (4.3), 
but now for a fixed exponent q = 3 only, knots were generated on [0, 11. Next these 
were mapped into [a, R] using a linear mapping such that 0 + R, 1 + a. The 
calculation of 

(4.4) 

was done in the following way. In the case that the kernel was not singular in the 
interval [tk, tk+ ,I, six Gauss-Legendre points were used to calculate the integral 
over this interval; in case the kernel was singular in some point SE [fk, rk+ ,] this 
interval was divided into subintervals [tk, s] and [s, I~+ ,I. The kernel was split 
into a regular part and an irregular part, 

In /x’+y’--R2( =In ]~--sl +ln ]y+sl, (4.5 1 

where the regular part was integrated using six Gauss-Legendre points and the 
irregular part was integrated via 

(4.6 1 

with u=(y-s)/d,d=t,+, -s and using six points {u[} and weights {by,} corre- 
sponding to In(u) as a weightfunction. Coinciding singularities were handled via 
In ~(J,--s)~[ =21n Iy-s]. 

For a larger number of collocation points and for a larger distribution exponent 
q, some knots can come very close to the singularity R. For an xj just larger than 
R, no singularities occur in the integrand in Eq. (4.4) and hence no subtraction is 
performed. However, the nearby singularity strongly influences the behaviour of the 
integrand and causes inaccuracies if the integration is carried out numerically. 
Atkinson [8] has shown how one can remove this difficulty: perform the subtrac- 
tion also in intervals sufficiently close to, but not containing, the singularity. (We 
actually followed that procedure in the case of pion-deuteron scattering, Section 5.) 
The main purpose of the example studied in the present section is not the 
determination of the integrals in Eq. (4.4), but the study of the accuracy and 
convergence of the solution as a function of the distribution of the knots. Therefore 
we did not use the sophisticated subtraction techniques or its refinements [S] for 
larger numbers of collocation points. Instead we used the fact that the basis 
functions B,(X) are cubic polynomials 

B;(x)= i 0,x’ (4.7 1 
/=O 
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in each interval [tj, tic ,I. The coefficients a, are known when the knots are 
determined. Note that: 

The integrals at the right-hand side can be performed analytically, so the calcula- 
tion reduces to a summation and function evaluations. We used double precision 
to determine the coefficients a,, the integrals in Eq. (4.8) and their sum. This 
procedure improved the accuracy with which the integrals in Eq. (4.4) could be 
determined. 

The results are shown in Fig. 4. Note that the accuracy of the numerical solution 
of the integral equation in the L, norm in this example is indeed determined to a 

8 
W 

‘2 1 
3”10° no’ lcf 

Number of cd. points 
FIG. 4. The difference in L, norm between the actual solution and the numerical result as a function 

of the number of collocation points for different values of the distribution exponent q. 
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large extent by the accuracy of the approximation of the square-root part; the rate 
of convergence in both cases is about the same. The fact that the accuracy of the 
solution becomes worse for q = 4 and more than 150 collocation points is due to 
numerical inaccuracies of some of the integrals of Eq. (4.4). This merely illustrates 
the fact that one should be very careful in applying a large distribution exponent 
in combination with a large number of collocation points. For a required level of 
accuracy of the solution and for a limited amount of computational effort, one may 
either employ more knots, following a power law distribution with a lower expo- 
nent, or less knots with a higher distribution exponent. In the latter case it turns 
out that eventually additional effort is needed to calculate the integrals (4.4) to the 
accuracy required. 

This example was also studied with the other set of basis functions discussed in 
the previous section. As expected from the results of the approximation problem, 
also in the solution of this integral equation large oscillations show up. Further- 
more, it should be noted that the elements from the set spanned by those basis 
functions do have a continuous second derivative everywhere, since knots are 
not allowed to coincide in that case. Such functions are therefore less suited to 
approximate a function with a discontinuous derivative at some point. This basis 
should therefore not be used to solve integral equations when the solution is known 
to have discontinuous derivatives at some points. 

5. PION-DEUTERON SCATTERING 

We applied the spline method to the physical problem of pion deuteron elastic 
scattering as described by an AGS-type equation which has been widely used for 
the nNN system [7,26-381 

Xfl,(q, k) = Z,,(q, k) + 1 jam Z,,(q, 4’) G,(q’) X,,(q’, k) q’2 dq’, (5.1) 
P 

where the subscripts ~1, /I, and y number different coupled channels. 
The one-particle exchange driving term is denoted by Z,,, .Yflir is the transition 

amplitude, and G, is the propagator of the interacting pair. The arguments q and 
k are the relative momentum between a spectator particle and an interacting pair 
and the initial pion on-shell momentum, respectively. 

Different stages of refinement of this three-body approach to the rcNN system 
have led to different forms of the terms Z and G; here we use expressions and the 
two-body input from Thomas [38]. It is the standard non-relativistic three-body 
AGS equation for two identical fermions and one different particle, supplemented 
by the use of relativistic kinematics for the pion (“RPK”). Since amplitudes are 
known from the literature in this case [38], both the accuracy of the spline method 
and the correctness of the computer code can be tested. 

As input, the 3S, - 30, NN and all S and P TCN partial waves are used, with form 

581,90 I-15 
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factor parametrisations and parameters from Thomas [38] resulting in at most 18 
coupled integral equations. 

These were solved by the spline method using the following knots. First the knots 
were distributed homogeneously over (- 1,O) and (0, 1). These knots, together with 
the points - 1 and 0, were redistributed over [ - 1, + l] by the mapping 

t(x) = 
i 
x”, o<x< 1 
-IN”, -1 QX<O, (5.2) 

using a distribution exponent d. Call these points t,, j = 1, . . . . 2m, with 5, = -1 and 
): bm+ r = 0. Finally, these knots were mapped onto [0, KI ) by 

1+5 
t({)=c- 

1-r’ 

0.0 
0 110 220 

q’ @W 

(5.3) 

FIG. 5. The curves in (q, 4’) plane on which the singularities in the kernel Z,,(q, q’) are located. The 
upper picture corresponds to /l resp. p indicating a NN resp. rrN pair; the lower picture corresponds to 
fl and y both indicating a nN pair. 
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TABLE I 

Convergence of the Amplitudes X,,(k, k) as a Function of the Number of Collocation Points Ncot 

NCOL 0’ 1. 1’ 2. 2’ 

9 -31.828+2.8112i -60.756 + 11.689 i 31.362+8.8693i 11.807+1.317Oi 175.47 + 32.280 i 

17 -31.363+2.3270i -61.872 + 12.967 i 30.929 + 8.5220 i 11.448+1.2529i 171.19+26.445i 

25 -31.310+2.35371’ d1.645+12.885i 30.837+8.5142i 11.473 + 1.2490 i 172.65 + 26.463 i 

33 -3 1.239 + 2.3426 i -61.525+12.806i 30.852+ 8.5384 i 11.482 + 1.2495 i 174.73 + 27.041 i 

9 -3 1.765 + 2.4205 i -58.516+11.63Oi 29.687 + 8.7279 i 11.669+1.276Oi 174.71+ 30.345 i 

17 -31.522+2.3882 i -61.505 + 13.039 i 31.511+8.68961‘ 11.699+1.2914i 175.81+ 27.1421 

25 -3 1.278 + 2.3458 i -61.656+12.838i 3 1 Ml3 + 8.5460 i 11 A85 + 1.2499 i 173.63+26.642i 

33 -3 1.235 + 2.3390 i -61.532+ 12.785 i 30.910+8.5496i 11.484+1.2493i 174.72 + 27.003 i 

NOW. Other parameters have the following values: N, = 16, Naro = 4, N,,, = 4, N,oo = 4. For 
the meaning of these parameters see the text. The upper part of the table corresponds to d=2, the 
lower part to d= 3. Although coupling between different L-values to form a total angular momentum 
J was taken into account in the calculation of the J” = I- and 2 + amplitudes only the results for 
the lowest L-values are shown in this and the following tables. The amplitudes are given in units of 
lo-’ fm. 

c being the point where the square root singularity occurs. (The point c is known 
in advance [ 14, 151.) We call these knots t,, j = 1. . . . . 2m, with t, = 0 and t,, + , = c. 
Three extra knots were placed at t, and t,, and two extra ones at c, making t, and 
t,, fourfold knots and c a triple knot. As collocation points we used 

St =o, s2 = tt, + t,)P, s, = t,, . ..) 

snl+1= ??I, t s m+2=(fm+fm+L)/Z snr+3= m+1= t c, 

Ll+4=(tm+l+tm+2n Stn+5=tm+2~-? 
(5.4) 

S2m+Z=t2m-Ir S Zm+3=(t2m-1+t2m)P~ s2m+4=t2m. 

TABLE II 

Convergence of the Amplitudes as a Function of N.V 

NX 0* I- I+ 2. 2’ 

8 -31.234+2.3388i -61.510+ 12.781 i 30.905 + 8.5494 i 11.484+1.2493i 174.71+27.003 i 

12 -31.235+2.339Qi +1.528+ 12.784i 30.909 + 8.5496 i 11.484+1.2493i 174.72+ 27.003 i 

16 -3 1.235 + 2.3390 i -61.532+ 12.785 i 30.910+8.5496i 11.484 + 1.2493 i 174.72+27.003 i 

20 -31.235+2.339Oi -61.534+ 12.785 i 30.910+ 8.5497 i 11.484+1.2493i 174.72+27.004i 

Note. Other parameters have the following values: Nc,, = 33, NREG = 4, NLEo = 4, N,oo = 4, 
d=3. 
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TABLE III 

Convergence of the Amplitudes as a Function of N,,, 

NREG 0’ 1. 1’ 2. 2* 

2 -31.236+2.3388i Al.542 + 12.789 i 30.904 + 8.549.9 i 11.484+1.2495i 174.73 + 27.010 i 

4 -31.235+2.339Oi -61.532+ 12.785 i 30.910+8.54961 11.484 + 1.2493 i 174.72+ 27.003 i 

8 -3 1.235 + 2.3390 i -61.532+ 12.785 i 30.910+8.5496i 11.484+1.2493i 174.72+ 27.003 i 

No@. Other parameters have the following values: N,,, = 33, N, = 16, N,,, = 4, NLoc = 4. 
d=3. 

Since the position of the singularity c in the solution XB,(q, k) is different for 
different channels /? (an NZV or rrN pair), two sets of knots were used. In the case 
of a deuteron final state the on-shell momentum k was used as an additional knot. 

Once the B-splines and collocation points are defined, the integrals 

s m Z,y(qj, 4’) Gy(q’) Bi(q’) q’2 4’ 
0 

(5.5 1 

need to be calculated. This was done in the following way. The calculation of the 
function Z,,(q, q’) requires the evaluation of an integral; the Cauchy-type 
singularity which occurs in its integrand for some values of q and q’ was handled 
using subtraction [39,40]. The integral over the regularised integrand was 
determined by N, = 16 Gauss-Legendre points. The calculation of the function 
G,(q’) also requires the evaluation of an integral which was done using 20 Gauss- 
Legendre points. 

In the q’ integration two types of singularities occur. Logarithmic singularities 
occur in Z,,(q, q’) for certain values of q and q’ and a Cauchy-type singularity 
occurs in G,(q’), if y denotes a channel containing a deuteron. The latter was 
handled by subtraction. The logarithmic singularities in Z,,(q, q’), which are 
located on a curve in the (q, q’) plane (see Fig. 5), were treated by subtraction in 
a small region around these singularity curves. A function which contains 
ln( (q’ - sil) explicitly and regularises the singularity was subtracted and the 

TABLE IV 

Convergence of the Amplitudes as a Function of N,,, 

N LEG 0‘ 1. I’ 2‘ 2’ 

2 -31.236+2.339Oi -61.542+ 12.78Oi 30.909 + 8.5496 i 11.464+1.2266i 174.72+27.014i 

4 -31.235+2.339Oi -61.532+ 12.785 i 30.910+8.5496 i 11.484+1.24931 174.72 + 27.003 i 

8 -31.235+2.339Oi -61.532+ 12.785 i 30.910 + 8.5497 i 11.484+ 1.2494i 174.72+27.004i 

Note. Other parameters have the following values: NCoL = 33, N, = 16, N,,, = 4, N,,, = 4, 
d=3. 
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TABLE V 

Convergence of the Amplitudes as a Function of N,,, 

NLLX 0’ I- 1’ 2. 2’ 

2 -31.235+2.3389i -61.532+ 12.785 i 30.910+8.5496 i 11.483 + 1.2495 i 174.72 + 27.006 i 

4 -31.235+2.339Oi -61.532+ 12.7851’ 30.910+8.5496 i 11.484 + 1.2493 i 114.72 + 27.003 i 

8 -31.235+2.339Oi -61.532+ 12.785 i 30.910+ 8.5496 i 11.484 + 1.2493 i 174.72 + 27.003 i 

Note. Other parameters have the following values: A’,,, = 33. N, = 16, N,,, =4, NLEo =4, 
ti= 3. 

regularised kernel was integrated over this small region using NLEG =4 Gauss- 
Legendre points; the added singular function was integrated using NLoG = 4 points 
and weights corresponding with the log function as a weight function. In regions 
were the integrand is regular, N,,, = 4 Gauss-Legendre points were used to 
integrate over each subinterval defined by two adjacent collocation points. 

We tested the numerical accuracy of the method by varying the total number of 
knots (and so the total number of collocation points) and the distribution of the 
knots around the square root singularity. The numbers of integration points, N,Y, 
N REGI KEG, and NLoG were also varied to test convergence as a function of these 
numbers. The results for the amplitudes X,,(k, k), corresponding to a deuteron in 
the initial and final state, are tabulated in Tables I-V for several values of the total 
angular momentum J and parity 7~. The amplitudes are normalised such that 
X&k, k) = (l/k) exp(iS) sin 6(fm) and are obtained for a pion laboratory energy of 

TABLE VI 

Comparison with the Results of Thomas [38] 

J” This work Thomas 

0’ -31.2 + 2.3i -31+ 2i 
I- -61.6 + 12.781’ -58 + 12i 
1’ 30.9 + 8.5i 31-t 8i 
2’ 179.3 + 28.Oi 179 + 28i 

Note. Our results were obtained with 33 collocation 
points. In Thomas’ work not all possible channels were 
included and the coupling between amplitudes with 
different L-values was ignored; only in the 2 + case were 
the included channels specified. We also used these 
specified channels in the 2’ case and turned off the 
coupling in the I- and 2’ case; in other cases all 
possible channels were included. The difference in the 
I- amplitude is attributed to the fact that probably in 
our calculation not the same channels were used as in 
Thomas’ calculation. 
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FIG. 6. Amplitude Xdd(q, k) for J” = 0 + as a function of pion final momentum for a pion kinetic lab 
energy of 140 MeV. The solid curve corresponds to the real part of the amplitude, the dashed curve to 
the imaginary part. 

47.7 MeV. A comparison with results from the literature is made in Table VI. 
Results for the amplitude X,,(q, k) as a function of q for J” = 0 +, l-, and 2 + for 
a pion kinetic lab energy of 140 MeV are shown in,Figs. 6-8. These results can be 
compared in a qualitative sense with the results obtained by Matsuyama [23]. He 
solved a slightly different set of equations by a similar method but used a different 
set of splines and did not address the question of the knot distribution. 

Some brief remarks about the computer code are appropriate here. The time- 
consuming parts of the program were written in completely vectorisable form. For 
the calculation of the O+, l-, l+, 2-, and 2+ amplitudes using the following 
number of collocation and integration points Ncor = 33, N, = 16, and NREG = 
N LEG - - NLOG = 4, 20% of the time was spent to determine the kernel Z and the rest 

FIG. 7. Same as Fig. 6, now for J”= 1 
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FIG. 8. Same as Fig. 6, now for J” = 2 +. 

of the time was needed to solve the systems of linear equations. In fact, the number 
of integration points could have been reduced to NREC = N,,,, = 2 (see Tables III 
and V), but since the calculation of Z requires only a small part of the total time 
it was not necessary to do so. 

As is seen from the numerical results, the spline method is a quickly converging 
method for the solution of the red three body integral equations along the real axis. 
The accuracy of the spline method with 33 collocation points is somewhat better 
than that of the contour rotation method with 32 points, when the convergence 
of the absolute value of the amplitude is considered [7]. Furthermore, the 
convergence of the contour rotation method deteriorates with increasing energy 
c71. 

Therefore we conclude that the spline method is an attractive alternative for the 
solution of the integral equations for three-body scattering. 
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